

THE POWER TO TRANSFORM



Linear Power Switch Mode Current Sense

## TRANSFORMERS

## **Table of Contents**

## Page

| of Contents1 |
|--------------|
|--------------|

| Company Profile | 2  |
|-----------------|----|
| AH & ADH Series | 4  |
| AHF Series      | 5  |
| AHI Series      | 6  |
| ACST Series     | 7  |
| 44000 Series    | 8  |
| AHR Series      | 10 |
| AHP & ADHP      | 11 |

| Custom Designs        | 14 |
|-----------------------|----|
| Custom Design Inquiry | 16 |
| Technical Notes       | 17 |



## **Corporate Profile**

Zettler Magnetics, Inc. is a wholly-owned subsidiary of Zettler Components, Inc. Zettler Magnetics, Inc. offers a wide range of UL approved open frame power transformers available in horizontal or vertical designs, low profile, and international style designs. We also offer a complete line of vacuum sealed transformers with power ratings from 0.6VA to 60VA that carry UL and VDE approvals. In addition to our standard open frame and sealed PCB mount power transformers, we also provide our customers with custom designs for specialized applications. Zettler Magnetics offers a truly global solution to almost every transformer requirement from our headquarters



located in Aliso Viejo, California.

The global manufacturing facilities for Zettler Magnetics are strategically located in Europe and Asia with prototype production based in California. Controlling the manufacturing and quality of each transformer gives assurance that our products meet the highest

possible standards in the industry. In addition, a highly knowledgeable sales force works closely with an experienced applications engineering department to help define the needs of our customers and to provide optimal solutions.

Zettler Magnetics is well renowned for traditional craftsmanship that is coupled with engineering excellence. Utilizing state of the art manufacturing techniques and equipment, such as a fully automated vacuum sealed transformer production line, creates uniform manufacturing that ensures quality at a reliable consistency. Zettler Magnetics is committed to providing the highest quality products to our customers.



## **AH & ADH Series Linear Power**

### Features

- UL 506 approved Class 1 for use in the US and Canada
- UL approved Class B (130° C) Insulation System
- Split Bobbin Design
- Dielectric Stength 2500 Vrms
- Standard Single 115V or Dual 115/230V primaries at 50/60Hz
- Standard Dual Secondaries for variety of applications
- Precision Molded-in Terminals
- Available in 6 Standard Power Ratings

| Order              | Number    | Secondary RMS Rating |                            |  |
|--------------------|-----------|----------------------|----------------------------|--|
| Single Pri         | Dual Pri  |                      |                            |  |
| 115v               | 115/230V  | Sorios               | Parallol                   |  |
| C Dim              | 0.0       | Genes                | i araner                   |  |
| 6 PIN              | 8 PIN     |                      |                            |  |
| AH20010            | ADH20010  | 10VCT @ 0.110A       | 5V @ 0.220A                |  |
| AH30010            | ADH30010  | 10VCT @ 0.250A       | 5V @ 0.500A                |  |
| AH40010            | ADH40010  | 10VCT @ 0.600A       | 5V @ 1.200A                |  |
| AH50010            | ADH50010  | 10VCT @ 1.200A       | 5V @ 2.400A                |  |
| AH60010            | ADH60010  |                      | 5V @ 4.000A                |  |
| AH20012            | ADH20012  | 12.6VCT @ 0.090A     | 6.3V@ 0.180A               |  |
| AH30012            | ADH30012  | 12.6VCT @ 0.200A     | 6.3V@ 0.400A               |  |
| AH40012            | ADH40012  | 12.6VCT @ 1.000A     | 6.3V@ 1.000A               |  |
| AH50012            |           | 12.6VCT @ 1.000A     | 6.3V @ 2.000A              |  |
| AH00012            | ADH60012  | 12.0VCT @ 0.070A     | 0.3V @ 3.200A              |  |
| AH20016            | ADH20016  | 16VCT @ 0.070A       | 8V @ 0.140A                |  |
| AH30016            |           | 16VCT @ 0.150A       | 8V @ 0.300A                |  |
| AH40016            |           | 16VCT @ 0.400A       | 0V @ 0.000A<br>9V @ 1.600A |  |
|                    |           | 16VCT @ 0.800A       | 8V @ 2.500A                |  |
|                    |           | 10VCT @ 0.055A       | 10V @ 0.110A               |  |
| AH20020            |           | 20VCT @ 0.055A       | 10V @ 0.110A               |  |
| AH30020            |           | 20VCT @ 0.120A       | 10V @ 0.240A               |  |
| AH40020<br>AH50020 | ADH40020  | 20VCT @ 0.500A       | 10V @ 0.000A               |  |
| AH60020            | ADH60020  | 20VCT @ 1.000A       | 10V @ 2.000A               |  |
| AH20020            | ADH20024  | 24VCT @ 0.045A       | 101 @ 0.0004               |  |
| AH30024            | ADH20024  | 24VCT @ 0.043A       | 12V @ 0.090A               |  |
| AH40024            | ADH40024  | 24VCT @ 0.250A       | 12V @ 0.200A               |  |
| AH50024            | ADH50024  | 24VCT @ 0500A        | 12V @ 1.000A               |  |
| AH60024            | ADH60024  | 24VCT @ 0.800A       | 12V @ 1.600A               |  |
| AH20028            | ADH20028  | 28VCT @ 0.040A       | 14V @ 0.080A               |  |
| AH30028            | ADH30028  | 28VCT @ 0.085A       | 14V @ 0.170A               |  |
| AH40028            | ADH40028  | 28VCT @ 0.200A       | 14V @ 0.400A               |  |
| AH50028            | ADH50028  | 28VCT @ 0.420A       | 14V @ 0.840A               |  |
| AH60028            | ADH60028  | 28VCT @ 0.700A       | 14V @ 1.400A               |  |
| AH20036            | ADH20036  | 36VCT @ 0.030A       | 18V @ 0.060A               |  |
| AH30036            | ADH30036  | 36VCT @ 0.065A       | 18V @ 0.130A               |  |
| AH40036            | ADH40036  | 36VCT @ 0.170A       | 18V @ 0.340A               |  |
| AH50036            | ADH50036  | 36VCT @ 0.350A       | 18V @ 0.700A               |  |
| AH60036            | ADH60036  | 36VCT @ 0.550A       | 18V @ 1.100A               |  |
| AH20048            | ADH20048  | 48VCT @ 0.023A       | 24V @ 0.046A               |  |
| AH30048            | ADH30048  | 48VCT @ 0.050A       | 24V @ 0.100A               |  |
| AH40048            | ADH40048  | 48VCT @ 0.125A       | 24V @ 0.250A               |  |
| AH50048            | ADH50048  | 48VCT @ 0.250A       | 24V @ 0.500A               |  |
| AH60048            | ADH60048  | 48VCT @ 0.400A       | 24V @ 0.800A               |  |
| AH20056            | ADH20056  | 56VCT @ 0.020A       | 28V @ 0.040A               |  |
| AH30056            | ADH30056  | 56VCT @ 0.045A       | 28V @ 0.090A               |  |
| AH40056            | ADH40056  | 56VCT @ 0.110A       | 28V @ 0.220A               |  |
| AH50056            | ADH50056  | 56VCT @ 0.220A       | 28V @ 0.440A               |  |
| AH60056            | ADH60056  | 56VCT @ 0.350A       | 28V @ 0.700A               |  |
| AH200120           | ADH200120 | 120VCT @ 0.010A      | 60V @ 0.020A               |  |
| AH300120           | ADH300120 | 120VCT @ 0.020A      | 60V @ 0.40A                |  |
| AH400120           | ADH400120 | 120VCT @ 0.050A      | 60V @ 0.100A               |  |
| AH500120           | ADH500120 | 120VCT @ 0.100A      | 60V @ 0.200A               |  |
| AH600120           | ADH600120 | 120VCI @ 0.160A      | 60V @ 0.320A               |  |





# AH & ADH Series Linear Power\_

### **Specifications**

| SIZE | VA   | L*                    | W*                    | H*                    | M*                    | A*                    | B*                    | C*                    | WT.<br>(Ibs.) |
|------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------|
| 2    | 1.1  | <u>1.375</u><br>34.93 | <u>1.125</u><br>28.58 | <u>0.930</u><br>23.62 | -                     | <u>0.250</u><br>6.35  | <u>0.250</u><br>6.35  | <u>1.220</u><br>30.99 | 0.17          |
| 3    | 2.4  | <u>1.375</u><br>34.93 | <u>1.125</u><br>28.58 | <u>1.170</u><br>29.72 | -                     | <u>0.250</u><br>6.35  | <u>0.250</u><br>6.35  | <u>1.220</u><br>30.99 | 0.25          |
| 4    | 6.0  | <u>1.625</u><br>41.28 | <u>1.313</u><br>33.35 | <u>1.290</u><br>32.77 | <u>1.063</u><br>26.99 | <u>0.250</u><br>6.35  | <u>0.350</u><br>8.89  | <u>1.280</u><br>32.51 | 0.44          |
| 5    | 12.0 | <u>1.875</u><br>47.63 | <u>1.563</u><br>39.69 | <u>1.410</u><br>35.81 | <u>1.250</u><br>31.75 | <u>0.300</u><br>7.62  | <u>0.400</u><br>10.16 | <u>1.400</u><br>35.56 | 0.70          |
| 6    | 20.0 | <u>2.250</u><br>57.15 | <u>1.875</u><br>47.63 | <u>1.410</u><br>35.81 | <u>1.500</u><br>38.10 | <u>0.300</u><br>7.62  | <u>0.400</u><br>10.16 | <u>1.590</u><br>40.39 | 0.80          |
| 7    | 36.0 | <u>2.625</u><br>66.68 | <u>2.188</u><br>55.56 | <u>1.560</u><br>39.62 | -                     | <u>0.400</u><br>10.16 | <u>0.400</u><br>10.16 | <u>1.840</u><br>46.74 | 1.1           |

\* Inches Millimeter

4

## **Outline Dimensions**

### **Electrical Schematic**





# AHF Series Low Profile

### **Features**

- Has UL and CUR Agency Approvals
- Dielectric Strength 1500 Vrms
- Dual 115 V / 230 V Primaries
- Split Bobbin Design
- Standard Dual Secondaries for a variety of Applications
- · Available in 3 Standard Sizes for a Variety of Power Requirements



## **Outline Dimension**



115V/230V 50/60 Hz

## **Specifications**

| VA  | L            | W            | H            | A            | В            |
|-----|--------------|--------------|--------------|--------------|--------------|
| 2.4 | <u>1.875</u> | <u>1.562</u> | <u>0.650</u> | <u>1.600</u> | <u>0.375</u> |
|     | 47.63        | 39.67        | 16.51        | 40.64        | 9.53         |
| 6   | <u>1.875</u> | <u>1.562</u> | <u>0.850</u> | <u>1.600</u> | <u>0.375</u> |
|     | 47.63        | 39.67        | 21.59        | 40.64        | 9.53         |
| 12  | <u>2.500</u> | <u>2.000</u> | <u>1.065</u> | <u>2.000</u> | <u>0.500</u> |
|     | 63.50        | 50.80        | 27.05        | 50.80        | 12.70        |

| ORDER NU            | MBER       | SECONDARY RMS RATINGS |       |       |      |      | IGS   |
|---------------------|------------|-----------------------|-------|-------|------|------|-------|
| 115/230V<br>Primary | VA<br>Size |                       | Serie | es    | F    | Para | llel  |
| AHF02010            | 2.4        | 10VCT                 | @     | 250mA | 5V   | @    | 500mA |
| AHF06010            | 6          | 10VCT                 | @     | 600mA | 5V   | @    | 1.2A  |
| AHF12010            | 12         | 10VCT                 | @     | 1.2A  | 5V   | @    | 2.4A  |
| AHF02012            | 2.4        | 12.6VCT               | @     | 200mA | 6.3V | @    | 400mA |
| AHF06012            | 6          | 12.6VCT               | @     | 450mA | 6.3V | @    | 900mA |
| AHF12012            | 12         | 12.6VCT               | @     | 900mA | 6.3V | @    | 1.8A  |
| AHF02016            | 2.4        | 16VCT                 | @     | 150mA | 8V   | @    | 300mA |
| AHF06016            | 6          | 16VCT                 | @     | 350mA | 8V   | @    | 700mA |
| AHF12016            | 12         | 16VCT                 | @     | 700mA | 8V   | @    | 1.4A  |
| AHF02020            | 2.4        | 20VCT                 | @     | 125mA | 10V  | @    | 250mA |
| AHF06020            | 6          | 20VCT                 | @     | 300mA | 10V  | @    | 600mA |
| AHF12020            | 12         | 20VCT                 | @     | 600mA | 10V  | @    | 1.2A  |
| AHF02024            | 2.4        | 24VCT                 | @     | 100mA | 12V  | @    | 200mA |
| AHF06024            | 6          | 24VCT                 | @     | 250mA | 12V  | @    | 500mA |
| AHF12024            | 12         | 24VCT                 | @     | 500mA | 12V  | @    | 1.0A  |
| AHF02030            | 2.4        | 30VCT                 | @     | 85mA  | 15V  | @    | 170mA |
| AHF06030            | 6          | 30VCT                 | @     | 200mA | 15V  | @    | 400mA |
| AHF12030            | 12         | 30VCT                 | @     | 400mA | 15V  | @    | 800mA |
| AHF02034            | 2.4        | 34VCT                 | @     | 75mA  | 17V  | @    | 150mA |
| AHF06034            | 6          | 34VCT                 | @     | 170mA | 17V  | @    | 340mA |
| AHF12034            | 12         | 34VCT                 | @     | 340mA | 17V  | @    | 680mA |
| AHF02040            | 2.4        | 40VCT                 | @     | 60mA  | 20V  | @    | 120mA |
| AHF06040            | 6          | 40VCT                 | @     | 150mA | 20V  | @    | 300mA |
| AHF12040            | 12         | 40VCT                 | @     | 300mA | 20V  | @    | 600mA |
| AHF02056            | 2.4        | 56VCT                 | @     | 45mA  | 28V  | @    | 90mA  |
| AHF06056            | 6          | 56VCT                 | @     | 100mA | 28V  | @    | 200mA |
| AHF12056            | 12         | 56VCT                 | @     | 200mA | 28V  | @    | 400mA |
| AHF02088            | 2.4        | 88VCT                 | @     | 28mA  | 44V  | @    | 56mA  |
| AHF06088            | 6          | 88VCT                 | @     | 65mA  | 44V  | @    | 130mA |
| AHF12088            | 12         | 88VCT                 | @     | 130mA | 44V  | @    | 260mA |
| AHF02120            | 2.4        | 120VCT                | @     | 20mA  | 60V  | @    | 40mA  |
| AHF06120            | 6          | 120VCT                | @     | 50mA  | 60V  | @    | 100mA |
| AHF12120            | 12         | 120VCT                | @     | 100mA | 60V  | @    | 200mA |
| AHF02230            | 2.4        | 230VCT                | @     | 10mA  | 115V | @    | 20mA  |
| AHF06230            | 6          | 230VCT                | @     | 25mA  | 115V | @    | 50mA  |
| AHF12230            | 12         | 230VCT                | @     | 50mA  | 115V | @    | 100mA |











# **AHI Series Linear Power**

## Features

- UL 1585 approved Class 2, 3: UL File No. E214561 (for 2.5 & 10 VA configurations, 5 VA is UL pending).
- Class B (130° C) Insulation system
- Built to meet requirments of IEC EN61558-1 & VDE safety standards
- Insulating shroud provides 4200 Vrms Hi-POT dielectric strength
- Bobbin and shroud material meet UL 94V-0 flammability requirements
- Specially designed bobbin wall slots eliminates all wire crossovers
- Dual bobbin non-concentric design reduces capacitances and eliminates the need for an electrostatic shield
- Precision pin alignment for easy drop-in application



## **Mechanical Data**



### **Electrical Data**

| PART NO.                         | OUTPUT                   | SECON                            | RMS R/                  | ATING             |                         |
|----------------------------------|--------------------------|----------------------------------|-------------------------|-------------------|-------------------------|
|                                  |                          | SERIE                            | S                       | PARA              | LLEL                    |
| AHI02510                         | 2.5VA                    | 10VCT                            | 0.25A                   | 5V                | 0.50A                   |
| AHI05010                         | 5.0VA                    | 10VCT                            | 0.50A                   | 5V                | 1.00A                   |
| AHI01010                         | 10.0VA                   | 10VCT                            | 1.00A                   | 5V                | 2.00A                   |
| AHI02512                         | 2.5VA                    | 12.6VCT                          | 0.20A                   | 6.3V              | 0.40A                   |
| AHI05012                         | 5.0VA                    | 12.6VCT                          | 0.40A                   | 6.3V              | 0.80A                   |
| AHI01012                         | 10.0VA                   | 12.6VCT                          | 0.80A                   | 6.3V              | 1.60A                   |
| AHI02516                         | 2.5VA                    | 16VCT                            | 0.15A                   | 8V                | 0.30A                   |
| AHI05016                         | 5.0VA                    | 16VCT                            | 0.31A                   | 8V                | 0.62A                   |
| AHI01016                         | 10.0VA                   | 16VCT                            | 0.62A                   | 8V                | 1.25A                   |
| AHI02520                         | 2.5VA                    | 20VCT                            | 0.12A                   | 10V               | 0.24A                   |
| AHI05020                         | 5.0VA                    | 20VCT                            | 0.25A                   | 10V               | 0.50A                   |
| AHI01020                         | 10.0VA                   | 20VCT                            | 0.50A                   | 10V               | 1.00A                   |
| AHI02524                         | 2.5VA                    | 24VCT                            | 0.10A                   | 12V               | 0.20A                   |
| AHI05024                         | 5.0VA                    | 24VCT                            | 0.21A                   | 12V               | 0.42A                   |
| AHI01024                         | 10.0VA                   | 24VCT                            | 0.42A                   | 12V               | 0.84A                   |
| AHI02528<br>AHI05028<br>AHI01028 | 2.5VA<br>5.0VA<br>10.0VA | 28VCT<br>28VCT<br>28VCT<br>28VCT | 0.09A<br>0.18A<br>0.36A | 14V<br>14V<br>14V | 0.18A<br>0.36A<br>0.72A |
| AHI02536                         | 2.5VA                    | 36VCT                            | 0.07A                   | 18V               | 0.14A                   |
| AHI05036                         | 5.0VA                    | 36VCT                            | 0.14A                   | 18V               | 0.28A                   |
| AHI01036                         | 10.0VA                   | 36VCT                            | 0.28A                   | 18V               | 0.56A                   |



# **ACST Series**

## Features

- UL approved Class B insulation system
- Dielectric strength 3000 Vrms
- Specially designed split bobbin
- Small physical package for tight configurations
- Typical output of 110m V per Ampere
- Cost Effective
- ACST-260 have Standard solid wire Primary Leads
- ACST-260- 1 have Tinned solid wire Primary Leads



### **Electrical Specifications**

| Part Number | Turns Ratio | Current Range | Typical Output<br>(mV/A) | Primary<br>Resistance<br>(u Ohms) max | Sense<br>Resistance<br>(Ohms)± 10% | Sense<br>Inductance<br>(H)± 30% | Primary Sense<br>Frenquency<br>(Hz) |
|-------------|-------------|---------------|--------------------------|---------------------------------------|------------------------------------|---------------------------------|-------------------------------------|
| ACST-255    | 1:50        | 1-30A         | 32                       | 800                                   | 0.198                              | 0.008                           | 50-200                              |
| ACST-256    | 1:100       | 1-30A         | 64                       | 800                                   | 0.785                              | 0.025                           | 50-200                              |
| ACST-257    | 1:150       | 1-30A         | 90                       | 800                                   | 1.7                                | 0.06                            | 50-200                              |
| ACST-258    | 1:200       | 1-30A         | 120                      | 800                                   | 3.2                                | 0.12                            | 50-200                              |
| ACST-259    | 1:300       | 1-30A         | 140                      | 800                                   | 7.4                                | 0.27                            | 50-200                              |
| ACST-260    | 1:500       | 1-30A         | 110                      | 800                                   | 20                                 | 0.73                            | 50-200                              |
| ACST-261    | 1:1000      | 1-30A         | 60                       | 800                                   | 79                                 | 2.4                             | 50-200                              |
| ACST-262    | 1:1500      | 1-30A         | 45                       | 800                                   | 220                                | 5.2                             | 50-200                              |

## **Mechanical Data**





# 44000 Series Sealed —

### Features

- UL and VDE approvals to conform with EN 60742
- Vaccum Sealed for increased protection
- Split Bobbin Design
- Dielectric Strength 4200 Vrms
- Standard Single Primary Winding 115V at 50/60 Hz
- Standard Single or Dual Secondaries for variety of applications
- Inherently Energy Limited
- Available in 11 Power Ratings



| Single Secondary    |                     |             |                   | Dual S              | Secondaries         |                 |                     |
|---------------------|---------------------|-------------|-------------------|---------------------|---------------------|-----------------|---------------------|
| Par                 | t No                |             | Output (Vrms)     | Part                | No                  | Output          | (Vrms)              |
| Single<br>Pri. 115V | Single<br>Pri. 230V | Power<br>VA | Single<br>(V @ A) | Single Pri.<br>115V | Single<br>Pri. 230V | Series<br>(V@A) | Parallel<br>(V @ A) |
| 44025               | 44013               | 0.6         | 6 @ 0.100         | 44031               | 44019               | 12 @ 0.050      | 6 @ 0.100           |
| 44026               | 44014               | 0.6         | 9 @ 0.066         | 44032               | 44020               | 18 @ 0.033      | 9 @ 0.066           |
| 44027               | 44015               | 0.6         | 12 @ 0.050        | 44033               | 44021               | 24 @ 0.025      | 12 @ 0.050          |
| 44028               | 44016               | 0.6         | 15 @ 0.040        | 44034               | 44022*              | 30 @ 0.020      | 15 @ 0.040          |
| 44029               | 44017               | 0.6         | 18 @ 0.033        | 44035               | 44023*              | 36 @ 0.017      | 18 @ 0.033          |
| 44030               | 44018               | 0.6         | 24 @ 0.025        | 44036               | 44024*              | 48 @ 0.013      | 24 @ 0.025          |
| 44061               | 44049               | 1.0         | 6 @ 0.167         | 44067               | 44055               | 12 @ 0.084      | 6 @ 0.167           |
| 44062               | 44050               | 1.0         | 9 @ 0.111         | 44068               | 44056               | 18 @ 0.056      | 9 @ 0.111           |
| 44063               | 44501               | 1.0         | 12 @ 0.083        | 44069               | 44057               | 24 @ 0.042      | 12 @ 0.083          |
| 44064               | 44052               | 1.0         | 15 @ 0.067        | 44070               | 44058               | 30 @ 0.034      | 15 @ 0.067          |
| 44065               | 44053               | 1.0         | 18 @ 0.056        | 44071               | 44059               | 36 @ 0.028      | 18 @ 0.056          |
| 44066               | 44054               | 1.0         | 24 @ 0.042        | 44072               | 44060*              | 48 @ 0.021      | 24 @ 0.042          |
| 44097               | 44085               | 1.5         | 6 @ 0.250         | 44103               | 44091               | 12 @ 0.125      | 6 @ 0.250           |
| 44098               | 44086               | 1.5         | 9 @ 0.167         | 44104               | 44092               | 18 @ 0.084      | 9 @ 0.167           |
| 44099               | 44087               | 1.5         | 12 @ 0.125        | 44105               | 44093               | 24 @ 0.063      | 12 @ 0.125          |
| 44100               | 44088               | 1.5         | 15 @ 0.100        | 44106               | 44094               | 30 @ 0.050      | 15 @ 0.100          |
| 44101               | 44089               | 1.5         | 18 @ 0.083        | 44107               | 44095*              | 36 @ 0.042      | 18 @ 0.083          |
| 44102               | 44090               | 1.5         | 24 @ 0.063        | 44108               | 44096*              | 48 @ 0.032      | 24 @ 0.063          |
| 44133               | 44121               | 2.0         | 6 @ 0.333         | 44139               | 44127               | 12 @ 0.167      | 6 @ 0.333           |
| 44134               | 44122               | 2.0         | 9 @ 0.222         | 44140               | 44128               | 18 @ 0.111      | 9 @ 0.222           |
| 44135               | 44123               | 2.0         | 12 @ 0.167        | 44141               | 44129               | 24 @ 0.084      | 12 @ 0.167          |
| 44136               | 44124               | 2.0         | 15 @ 0.133        | 44142               | 44130               | 30 @ 0.067      | 15 @ 0.133          |
| 44137               | 44125               | 2.0         | 18 @ 0.111        | 44143               | 44131*              | 36 @ 0.056      | 18 @ 0.111          |
| 44138               | 44126               | 2.0         | 24 @ 0.083        | 44144               | 44132*              | 48 @ 0.042      | 24 @ 0.083          |
| 44169               | 44157               | 2.3         | 6 @ 0.383         | 44175               | 44163               | 12 @ 0.192      | 6 @ 0.383           |
| 44170               | 44158               | 2.3         | 9 @ 0.256         | 44176               | 44164               | 18 @ 0.128      | 9 @ 0.256           |
| 44171               | 44159               | 2.3         | 12 @ 0.192        | 44177               | 44165               | 24 @ 0.096      | 12 @ 0.192          |
| 44172               | 44160               | 2.3         | 15 @ 0.153        | 44178               | 44166               | 30 @ 0.077      | 15 @ 0.153          |
| 44173               | 44161               | 2.3         | 18 @ 0.128        | 44179               | 44167*              | 36 @ 0.064      | 18 @ 0.128          |
| 44174               | 44162               | 2.3         | 24 @ 0.096        | 44180               | 44168*              | 48 @ 0.048      | 24 @ 0.096          |
| 44205               | 44193               | 3.2         | 6 @ 0.533         | 44211               | 44199               | 12 @ 0.267      | 6 @ 0.533           |
| 44206               | 44194               | 3.2         | 9 @ 0.356         | 44212               | 44200               | 18 @ 0.178      | 9 @ 0.356           |
| 44207               | 44195               | 3.2         | 12 @ 0.267        | 44213               | 44201               | 24 @ 0.134      | 12 @ 0.267          |
| 44208               | 44196               | 3.2         | 15 @ 0.213        | 44214               | 44202               | 30 @ 0.107      | 15 @ 0.213          |
| 44209               | 44197               | 3.2         | 18 @ 0.178        | 44215               | 44203               | 36 @ 0.089      | 18 @ 0.178          |
| 44210               | 44198               | 3.2         | 24 @ 0.133        | 44216               | 44204*              | 48 @ 0.067      | 24 @ 0.133          |





# **4000 Series Sealed**

### Features

- UL and VDE approvals to conform with EN 60742
- Vaccum Sealed for increased protection
- Split Bobbin Design
- Dielectric Strength 4200 Vrms
- Standard Single Primary Winding 115V at 50/60 Hz
- Standard Single or Dual Secondaries for variety of applications
- Inherently Energy Limited
- Available in 11 Power Ratings



| Single Secondary    |                     |       |                   | Dual                | Socondarios         |                   |                     |
|---------------------|---------------------|-------|-------------------|---------------------|---------------------|-------------------|---------------------|
| Single Secondary    |                     |       |                   | Duar                | Secondaries         | <u></u>           |                     |
| Par                 | t No                | Power | Output (Vrms)     | Part                | : No                | Output            | (Vrms)              |
| Single<br>Pri. 115V | Single<br>Pri. 230V | VA    | Single<br>(V @ A) | Single Pri.<br>115V | Single<br>Pri. 230V | Series<br>(V @ A) | Parallel<br>(V @ A) |
| 44241               | 44229               | 5.0   | 6 @ 0.833         | 44247               | 44235               | 12 @ 0.417        | 6 @ 0.833           |
| 44242               | 44230               | 5.0   | 9 @ 0.556         | 44248               | 44236               | 18 @ 0.278        | 9 @ 0.556           |
| 44243               | 44231               | 5.0   | 12 @ 0.417        | 44249               | 44237               | 24 @ 0.209        | 12 @ 0.417          |
| 44244               | 44232               | 5.0   | 15 @ 0.333        | 44250               | 44238               | 30 @ 0.167        | 15 @ 0.333          |
| 44245               | 44233               | 5.0   | 18 @ 0.278        | 44251               | 44239               | 36 @ 0.139        | 18 @ 0.278          |
| 44246               | 44234               | 5.0   | 24 @ 0.208        | 44252               | 44240*              | 48 @ 0.104        | 24 @ 0.208          |
| 44277               | 44265               | 10.0  | 6 @ 1.667         | 44283               | 44271               | 12 @ 0.834        | 6 @ 1.667           |
| 44278               | 44266               | 10.0  | 9 @ 1.111         | 44284               | 44272               | 18 @ 0.556        | 9 @ 1.111           |
| 44279               | 44267               | 10.0  | 12 @ 0.833        | 44285               | 44273               | 24 @ 0.417        | 12 @ 0.833          |
| 44280               | 44268               | 10.0  | 15 @ 0.667        | 44286               | 44274               | 30 @ 0.334        | 15 @ 0.667          |
| 44281               | 44269               | 10.0  | 18 @ 0.556        | 44287               | 44275               | 36 @ 0.278        | 18 @ 0.556          |
| 44282               | 44270               | 10.0  | 24 @ 0.417        | 44288               | 44276*              | 48 @ 0.209        | 24 @ 0.417          |
| 44313               | 44301               | 16.0  | 6 @ 2.667         | 44319               | 44307               | 12 @ 1.334        | 6 @ 2.667           |
| 44314               | 44302               | 16.0  | 9 @ 1.778         | 44320               | 44308               | 18 @ 0.889        | 9 @ 1.778           |
| 44315               | 44303               | 16.0  | 12 @ 1.330        | 44321               | 44309               | 24 @ 0.665        | 12 @ 1.330          |
| 44316               | 44304               | 16.0  | 15 @ 1.067        | 44322               | 44310               | 30 @ 0.534        | 15 @ 1.067          |
| 44317               | 44305               | 16.0  | 18 @ 0.889        | 44323               | 44311               | 36 @ 0.445        | 18 @ 0.889          |
| 44318               | 44306               | 16.0  | 24 @ 0.667        | 44324               | 44312*              | 48 @ 0.334        | 24 @ 0.667          |
| 44444               | 44432               | 22.0  | 6 @ 3.667         | 44450               | 44438               | 12 @ 1.834        | 6 @ 3.667           |
| 44445               | 44433               | 22.0  | 9 @ 2.444         | 44451               | 44439               | 18 @ 1.222        | 9 @ 2.444           |
| 44446               | 44434               | 22.0  | 12 @ 1.833        | 44452               | 44440               | 24 @ 0.917        | 12 @ 1.833          |
| 44447               | 44435               | 22.0  | 15 @ 1.467        | 44453               | 44441               | 30 @ 0.734        | 15 @ 1.467          |
| 44448               | 44436               | 22.0  | 18 @ 1.222        | 44454               | 44442               | 36 @ 0.611        | 18 @ 1.222          |
| 44449               | 44437               | 22.0  | 24 @ 0.917        | 44455               | 44443*              | 48 @ 0.459        | 24 @ 0.917          |
| 44385               | 44373               | 30.0  | 6 @ 5.000         | 44391               | 44379               | 12 @ 2.500        | 6 @ 5.000           |
| 44386               | 44374               | 30.0  | 9 @ 3.333         | 44392               | 44380               | 18 @ 1.667        | 9 @ 3.333           |
| 44387               | 44375               | 30.0  | 12 @ 2.500        | 44393               | 44381               | 24 @ 1.250        | 12 @ 2.500          |
| 44388               | 44376               | 30.0  | 15 @ 2.000        | 44394               | 44382               | 30 @ 1.000        | 15 @ 2.000          |
| 44389               | 44377               | 30.0  | 18 @ 1.667        | 44395               | 44383               | 36 @ 0.834        | 18 @ 1.667          |
| 44390               | 44378               | 30.0  | 24 @ 1.250        | 44396               | 44384*              | 48 @ 0.625        | 24 @ 1.250          |

\* Limited Approval Ratings



# **AHR Series Chassis Mount**

## Part Numbering System



Part number ordering information.

### Mounting

| Designator | Mounting Type             |
|------------|---------------------------|
| FM         | Foot Mount, Bracket       |
| MM         | Multi Mount Adapter Plate |
| PM         | Panel Mount, Lam Holes    |
| FC         | Screw Term                |

### **Primary & Secondary Voltages**

| Designator | Primary<br>Volts | Secondary<br>Volts | Freq.<br>Hz |
|------------|------------------|--------------------|-------------|
| 309        | 120              | 24                 | 60          |
| 310        | 208/240          | 24                 | 50/60       |
| 311        | 120              | 24                 | 50/60       |
| 312        | 240              | 24                 | 50/60       |
| 313        | 277              | 24                 | 50/60       |
| 314        | 480              | 24                 | 50/60       |
| 315        | 380/415          | 24                 | 50/60       |
| 316        | 575              | 24                 | 50/60       |
| 317        | 120/240          | 24                 | 50/60       |
| 318        | 120/208/240      | 24                 | 50/60       |

### VA Rating

| Designator | Secondary VA |  |  |
|------------|--------------|--|--|
| 30         | 30           |  |  |
| 40         | 40           |  |  |

### Termination

| Designator | Terminal Type        |
|------------|----------------------|
| NIL        | No QD or Wire        |
| QT         | Top Quick Disconnect |
| Q1         | One Side QD          |
| Q2         | Both Sides QD        |
| W          | Wire Leads           |
| QW         | QD and Wire Leads    |

#### NOTES

- 1. This is a partial listing only, consult factory for your specific requirements. All voltage & VA combinations may not be available.
- Example: AHR40309FMQT-5555. This part is a 40V Class II transformer with a 120V Primary and 24V Secondary. This is a foot mount transformer with top mounted quick disonnect terminals.







- ° Single or Dual Primary (115/230V)
- ° Designed to meet International Safety Requirements
- ° Inherently Limited Versions available
- ° UL94V-0 Rated materials
- ° 4500 Vrms Isolation Strength (pri:Sec)
- ° Designed for EN60950, UL1477 and UL 1585
- ° Class A & B Insulation

#### **Electrical Data**

| Part No     | Part No     |                | Secondary Output (Vrms) |          |       |      |          |       |          |          |       |
|-------------|-------------|----------------|-------------------------|----------|-------|------|----------|-------|----------|----------|-------|
| Single Pri. | Dual Pri.   | Output<br>(VA) |                         | Series   |       | I    | Parallel |       | Du       | al Ou    | tput  |
| 115V        | 115/230V    |                | vст                     |          | Amps  | Vrms |          | Amps  | Vrms-Vrn | ns       | Amps  |
| AHP012050   | ADHP012050  | 1.2            | 10.0                    | 0        | 0.120 | 5.0  | 0        | 0.240 | 5-5      | ø        | 0.120 |
| AHP020050   | ADHP020050  | 2.0            | 10.0                    | 0        | 0.200 | 5.0  | 0        | 0.400 | 5-5      | 0        | 0.200 |
| AHP030050   | ADHP030050  | 3.0            | 10.0                    | 0        | 0.300 | 5.0  | 0        | 0.600 | 5-5      | Ø        | 0.300 |
| AHP060050   | ADHP060050  | 6.0            | 10.0                    | 0        | 0.600 | 5.0  | 0        | 1.200 | 5-5      | @        | 0.600 |
| AHP105050   | ADHP105050  | 10.5           | 10.0                    | @        | 1.050 | 5.0  | 0        | 2.100 | 5-5      | @        | 1.050 |
| AHP145050   | ADHP145050  | 14.5           | 10.0                    | 0        | 1.450 | 5.0  | 0        | 2.900 | 5-5      | 0        | 1.450 |
| AHP012063   | ADHF012003  | 1.2            | 12.0                    | 0        | 0.095 | 0.3  | 0        | 0.190 | 0.3-0.3  | 0        | 0.095 |
| AHP020063   | ADHP020063  | 2.0            | 12.0                    | 0        | 0.156 | 6.3  | 0        | 0.315 | 63-63    | 6        | 0.156 |
| AHP060063   | ADHP060063  | 6.0            | 12.0                    |          | 0.230 | 6.3  | 0        | 0.952 | 63-63    | 0        | 0.476 |
| AHP105063   | ADHP105063  | 10.5           | 12.6                    | a        | 0.834 | 6.3  | @        | 1.667 | 6.3-6.3  | a        | 0.834 |
| AHP145063   | ADHP145063  | 14.5           | 12.6                    | @        | 1.151 | 6.3  | @        | 2.302 | 6.3-6.3  | <i>a</i> | 1.151 |
| AHP012080   | ADHP012080  | 1.2            | 16.0                    | 0        | 0.075 | 8.0  | 0        | 0.150 | 8-8      | 0        | 0.075 |
| AHP020080   | ADHP020080  | 2.0            | 16.0                    | a        | 0.125 | 8.0  | a        | 0.250 | 8-8      | a        | 0.125 |
| AHP030080   | ADHP030080  | 3.0            | 16.0                    | <i>a</i> | 0.188 | 8.0  | a        | 0.375 | 8-8      | <i>a</i> | 0.188 |
| AHP060080   | ADHP060080  | 6.0            | 16.0                    | a        | 0.375 | 8.0  | @        | 0.750 | 8-8      | a        | 0.375 |
| AHP105080   | ADHP105080  | 10.5           | 16.0                    | <i>a</i> | 0.657 | 8.0  | a        | 1.313 | 8-8      | <i>a</i> | 0.657 |
| AHP145080   | ADHP145080  | 14.5           | 16.0                    | a        | 0.907 | 8.0  | @        | 1.813 | 8-8      | a        | 0.907 |
| AHP012100   | ADHP012100  | 1.2            | 20.0                    | a        | 0.060 | 10.0 | @        | 0.120 | 10-10    | a        | 0.060 |
| AHP020100   | ADHP020100  | 2.0            | 20.0                    |          | 0.100 | 10.0 |          | 0.200 | 10-10    |          | 0.100 |
| AHP030100   | ADHP030100  | 3.0            | 20.0                    |          | 0.150 | 10.0 |          | 0.300 | 10-10    |          | 0.150 |
| AHP060100   | ADHP060100  | 6.0            | 20.0                    |          | 0.300 | 10.0 |          | 0.600 | 10-10    |          | 0.300 |
| AUR105100   | ADHR105100  | 10.5           | 20.0                    | 0        | 0.525 | 10.0 | 0        | 1.050 | 10-10    | <u> </u> | 0.525 |
| AHP145100   | ADHP145100  | 14.5           | 20.0                    | a        | 0.725 | 10.0 | a        | 1.450 | 10-10    | a        | 0.725 |
| AHP012120   | ADHP012120  | 12             | 24.0                    | 0        | 0.050 | 12.0 | 0        | 0.100 | 12-12    | 0        | 0.050 |
| AHR020120   | ADHP020120  | 2.0            | 24.0                    | 0        | 0.000 | 12.0 | 0        | 0.165 | 12-12    | 0        | 0.093 |
| AHP030120   | ADHP030120  | 3.0            | 24.0                    |          | 0.000 | 12.0 | a        | 0.250 | 12-12    |          | 0.125 |
| AHR060120   | ADHP060120  | 6.0            | 24.0                    | 0        | 0.720 | 12.0 | 0        | 0.500 | 12-12    | 0        | 0.250 |
| AHD105120   | ADHR105120  | 10.5           | 24.0                    | 0        | 0.230 | 12.0 |          | 0.000 | 10.10    | 0        | 0.200 |
| AHP105120   | ADHP105120  | 14.5           | 24.0                    | 0        | 0.438 | 12.0 | 0        | 1 209 | 12-12    | 0        | 0.430 |
| AHR020140   | ADHP020140  | 2.0            | 24.0                    | 0        | 0.083 | 14.0 | 0        | 0.165 | 14-14    | 0        | 0.004 |
| AHR020140   | ADHR020140  | 2.0            | 00.0                    | 0        | 0.107 | 14.0 | <u> </u> | 0.014 | 14-14    | 0        | 0.005 |
| AHR060140   | ADHR060140  | 6.0            | 20.0                    | 0        | 0.015 | 14.0 | <u> </u> | 0.420 | 14-14    | 0        | 0.015 |
| AHD105140   | ADHR105140  | 10.5           | 20.0                    | 0        | 0.275 | 14.0 | <u> </u> | 0.750 | 14-14    | 0        | 0.275 |
| AHP105140   | ADHP145140  | 14.5           | 28.0                    | 0        | 0.519 | 14.0 | 0        | 1.026 | 14-14    | 0        | 0.575 |
| AHD020180   | ADHR020180  | 14.5           | 20.0                    | 0        | 0.010 | 19.0 | 0        | 0.110 | 10.10    | 0        | 0.055 |
| AHP020180   | ADHP020180  | 2.0            | 36.0                    | 0        | 0.055 | 18.0 | 0        | 0.110 | 10-10    | 0        | 0.055 |
| AHP060180   |             | 6.0            | 36.0                    | 0        | 0.167 | 18.0 |          | 0.107 | 19-10    | ø        | 0.167 |
|             |             | 10.5           | 30.0                    |          | 0.107 | 18.0 |          | 0.333 | 10-10    | @        | 0.107 |
| AHP145180   | ADHP145190  | 14.5           | 36.0                    | a        | 0.292 | 18.0 | a        | 0.583 | 18-18    | @<br>@   | 0.292 |
| AHP020240   | ADHP020240  | 2.0            | 48.0                    | 0        | 0.041 | 24.0 | 0        | 0.082 | 24-24    | 0        | 0.041 |
| AHP030240   | ADHP030240  | 3.0            | 48.0                    | 0        | 0.063 | 24.0 | 0        | 0.125 | 24-24    | 0        | 0.063 |
| AHR060240   | ADUP060240  | 6.0            | 40.0                    | 0        | 0.125 | 24.0 | 0        | 0.250 | 24-24    | 0        | 0.125 |
| AHP105240   | ADHP105240  | 10.5           | 40.0                    | 0        | 0.123 | 24.0 | 0        | 0.250 | 24-24    | 0        | 0.125 |
| AHP105240   | ADHF 105240 | 10.5           | 40.0                    |          | 0.219 | 24.0 |          | 0.430 | 24-24    |          | 0.219 |

## Schematic & Mechanical data AHP/ADHP 012 Series





# **AHP-ADHP Series.**

#### AHP/ADHP 020 Series



# ZETTLER Magnetics, Inc.

# **AHR Series**

## 30 VA - 40 VA QUICK CONNECT CLASS 2 UL 1585 Approval

### **Features**

- 30VA 40 VA Inherently energy limited
- Compact frame size
- No secondary fusing required
- · Low heat rise
- Operation Frequency: 50/60 Hz
- Input voltages 120-575 V, output-24 V
- Terminations with quick-connect: top, one side, or both sides
- Customization for wire length, color, terminations and other preferences
- Split bobbin design
- Class B insulation system 130°C rated
- UL/CUR File E214561





## **General Data**

| Mounting<br>Options      | Foot Mount, Bracket<br>Multi Mount Adapter Plate (4x4)<br>Panel Mount, Lam Holes            |
|--------------------------|---------------------------------------------------------------------------------------------|
| Quick Connect<br>Options | QT – Top mounted QD terminals<br>Q1 – One side QD terminals<br>Q2 – Both sides QD terminals |
| Quick Connect<br>Size    | Standard male quick connect terminals are .250 x .032                                       |
| Frequency                | 60 Hz, 50/60 Hz                                                                             |
| Insulation<br>System     | 130°C Class B                                                                               |

## **Standard Models Available**

| Pri Sec.<br>Voltage | 30VA Standard<br>Model Designation | 40VA Standard<br>Model Designation |
|---------------------|------------------------------------|------------------------------------|
| 120 – 24            | AHR30309                           | AHR40309                           |
| 208/240 - 24        | AHR30310                           | AHR40310                           |
| 120 – 24            | AHR30311                           | AHR40311                           |
| 240 – 24            | AHR30312                           | AHR40312                           |
| 277 – 24            | AHR30313                           | AHR40313                           |
| 480 – 24            | AHR30314                           | AHR40314                           |
| 380/415 – 24        | AHR30315                           | AHR40315                           |
| 575 – 24            | AHR30316                           | AHR40316                           |
| 120/240 - 24        | AHR30317                           | AHR40317                           |
| 120/208/240 - 24    | AHR30318                           | AHR40318                           |

#### NOTES

Zettler Magnetics, Inc. can custom build transformers to many different specifications. Contact Zettler Magnetics directly for more information



## 30 VA - 40 VA QUICK CONNECT CLASS 2 UL 1585 Approval

### **Mechanical Data**



\* All dimensions are shown in millimeters.



# **AHR Series**

## 30 VA - 40 VA QUICK CONNECT CLASS 2 UL 1585 Approval

### Features

- 30VA 40 VA Inherently energy limited
- Compact frame size
- No secondary fusing required
- Low heat rise
- Operation Frequency: 50/60 Hz
- Input voltages 120-575 V, output-24 V
- · Terminations with screw,quick-connector wire leads
- Customization for wire length, color, terminations and other preferences
- Split bobbin design
- Class B insulation system 130°C rated
- UL/CUR File E214561





| Pri Sec.<br>Voltage | 30VA Standard<br>Model Designation | 40VA Standard<br>Model Designation |
|---------------------|------------------------------------|------------------------------------|
| 120 – 24            | AHR30309                           | AHR40309                           |
| 208/240 - 24        | AHR30310                           | AHR40310                           |
| 120 – 24            | AHR30311                           | AHR40311                           |
| 240 – 24            | AHR30312                           | AHR40312                           |
| 277 – 24            | AHR30313                           | AHR40313                           |
| 480 – 24            | AHR30314                           | AHR40314                           |
| 380/415 – 24        | AHR30315                           | AHR40315                           |
| 575 – 24            | AHR30316                           | AHR40316                           |
| 120/240 - 24        | AHR30317                           | AHR40317                           |
| 120/208/240 - 24    | AHR30318                           | AHR40318                           |

Standard Models Available

### **General Data**

| Mounting<br>Options  | Foot Mount, Bracket<br>Multi Mount Adapter Plate<br>Panel Mount, Lam Holes<br>Screw Term.             |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Wire Size            | All leads are 18 AWG stranded<br>UL1015<br>Stranded wires have 300mm<br>total length, with 10mm strip |  |  |  |
| Frequency            | 60 Hz, 50/60 Hz                                                                                       |  |  |  |
|                      |                                                                                                       |  |  |  |
| Insulation<br>System | 130°C Class B                                                                                         |  |  |  |

#### NOTES

Zettler Magnetics, INC. can custom build transformers to many different specifications. Contact Zettler Magnetics for more information.

## Wire Lead Details

|           | Voltage | Color*    | Length<br>(mm) | Strip Length<br>(mm) |
|-----------|---------|-----------|----------------|----------------------|
|           | COM     | Black     | 300            | 10                   |
|           | 120     | White     | 300            | 10                   |
| Primary   | 208     | Red       | 300            | 10                   |
|           | 240     | Orange    | 300            | 10                   |
|           | 277     | Brown     | 300            | 10                   |
|           | 480     | Black/Red | 300            | 10                   |
|           | 575     | Grey      | 300            | 10                   |
| Secondary | 24      | Blue      | 300            | 10                   |
| Secondary | COM     | Yellow    | 300            | 10                   |

\* Suggested wire colors: consult factory for specific wire color requirements

## ZETTLER Magnetics, Inc.

## 30 VA - 40 VA Wire Lead Connect CLASS 2 UL 1585 Approval

### **Mechanican Data**



All dimensions are shown in millimeters except as noted.



## **Custom Designs**



Inductors

Custom designed inductors for a large varity of applications for low frequencies as well as high frequencies.



### **Common Mode Choke Transformers**

Suitable for dimmers, fans, mixers, juicers, power tools, measuring instruments, acoustic systems, TVs, desk top calculators, computers, various types of terminals, prevention of noise (EMI) in the I/O of switching power supplies.



#### **AC Current Sensors**

Current sensors for sensing AC loads are used in numerous applications. Zettler Magnetics, Inc. offers a variety of solutions for this type of component up to hundreds of amperes sensed, at 50-400 Hz.



## **Custom Designs**

Custom designs are our specialty! Let our highly experienced design engineers assist you in designing a transformer that is custom tailored to fit your next project application.

Zettler Magnetics, Inc. has many years of transformer experience. As a result, our engineering staff has the expertise it takes to find solutions to our customers' specialized transformer applications. Whether you need to slightly alter one of our standard products or completely custom design a transformer to support your electrical demands, our engineers are ready to provide the answers to your custom transformer requirements.

At Zettler Magnetics, Inc, we offer many different styles of custom designs. The following categories are just a few of the types of custom transformers that we produce. If you don't see a style below that fits your application, contact us direct to discuss your special transformer needs.



**Custom Power Transformers** 

Custom designed power transformers for one or three phases, low to high power, frequencies of 50, 60 and 400 Hz based on customer specifications.



**Switch Mode Transformers** 

Suitable for converter inverters, computers, telecommunications, switching power supplies, EL driver modules, etc.



## **Custom Designs Inquiry**

#### CUSTOM TRANSFORMER DESIGN INQUIRY

| CUSTOMER INFORMATION |         |  |  |  |  |
|----------------------|---------|--|--|--|--|
| Company:             | Phone:  |  |  |  |  |
| Address:             | Fax:    |  |  |  |  |
| City, State, ZIP:    | e-mail: |  |  |  |  |
| Contact:             | Title:  |  |  |  |  |

| DE                                 | ESIGN SPEC                                        | IFICATION                             | 5 (where | ever applicab   | le]      |     |  |  |
|------------------------------------|---------------------------------------------------|---------------------------------------|----------|-----------------|----------|-----|--|--|
|                                    | 🗌 Flyback [                                       | Linear Pow                            | er 🗌 To  | oroidal         |          |     |  |  |
| Transformer Type                   | Forward [                                         | Forward      Current Sense      Other |          |                 |          |     |  |  |
| Operating / Switching<br>Frequency |                                                   |                                       |          |                 |          |     |  |  |
| Duty Cycle (Max)                   |                                                   |                                       |          |                 |          |     |  |  |
| Input Voltage                      |                                                   | C                                     |          | Vmin            | Vma      | ax  |  |  |
| Output (Switching)                 | Out 1:                                            | V                                     | А        | Out 2:          | V        | А   |  |  |
|                                    | Out 3:                                            | V                                     | А        | Out 4:          | V        | А   |  |  |
|                                    | Out 5:                                            | V                                     | А        | Aux:            | V        | А   |  |  |
| Output (Linear)                    | Parallel                                          | V                                     | А        | Series:         | V        | А   |  |  |
| Power Rating                       |                                                   |                                       |          |                 | VA / Wa  | tts |  |  |
| Dielectric Strength                |                                                   |                                       |          |                 |          |     |  |  |
| Safety Standards                   | UL/CUR_                                           | 🗆                                     | IEC      |                 | DE       | CE  |  |  |
| Insulation Class                   | ☐ A: 105°C                                        | □ B: 130°C                            | 🗌 none   | : 85°C and belo | w        |     |  |  |
| Mounting Options                   | PC Board                                          | 🗌 Chassis                             | Othe     | er:             |          |     |  |  |
| Termination                        | Specify: (Solder Lugs, QD-term, lead-wries, etc.) |                                       |          |                 |          |     |  |  |
| Limiting Dimensions                | W:                                                | _ L:                                  | H:       |                 | Ref P/N: |     |  |  |
| IC No. & Manufacturer              |                                                   |                                       |          |                 |          |     |  |  |
| Notes                              | (attach additiona                                 | I sheet(s) if neces                   | ssary)   |                 |          |     |  |  |

| Α                | DDITIONAL INFORMATION |  |
|------------------|-----------------------|--|
| Application Use: | EAU:                  |  |
| Target Price:    |                       |  |



Applying this table to our hypothetical power supply the transformer current can be approximated as:

For a Full-Wave Center Tap 1.2 x 0.35 = 0.42 A or For a Full-Wave Bridge 1.8 x 0.35 = 0.63 A

The final transformer specification would then be:

For a Full-Wave center tap application Secondary rating: 28 VCT @ 0.42 A Approx. transformer power rating: 12 VA Possible Zettler Magnetics, Inc. p/n: AH50028

For a Full-Wave bridge application Secondary rating: 14.6 V @ 0.63 A Approx. transformer power rating: 9 VA Possible Zettler Magnetics, Inc. p/n: AH50028

### **Dual Complementary supplies**

Another common power supply is the Dual Complementary design as shown below.



One last example concerning the Dual Complementary supply will be shown. In this example we will be selecting a transformer to be used on a Dual Complementary supply with a design voltage of  $\pm 10$  V @ 100 mA DC. The calculations are as follows:

Vout = ±10 V VRECT = 0.7 V VREG = 3 V VRIPPLE = 1.0 V VAC =  $\frac{(10 + 3 + 0.7 + 1.0)}{0.9} \times \frac{115}{95} \times \frac{1}{\sqrt{2}} = 14V$ IAC = 1.8 x 100 mA = 180 mA rms The transformer secondary rating is 28 VCT @ 180mA rms. A possible Zettler Magnetics, Inc. solution would be p/n: AH40028.

To be safe, a precautionary calculation covering the potential increase in voltage at the filter capacitor (into the regulator) caused by a high line condition needs to be made. If a potential high line voltage of 130 VAC is assumed then the transformer output (compared to low line) would rise by the ratio of 130/95. The following recalculation would then apply:

$$V_{AC} = \frac{(10+3+0.7+1.0)}{0.9} \times \frac{130}{95} \times \frac{1}{\sqrt{2}} = 15.8V$$

The increase in the output must be absorbed by the regulator, which results in higher regulator power dissipation. The illustrated values are safe for a typical IC regulator but should be checked in any specific application.

### Load Regulation

Thus far all calculations were performed with the assumption that a full load was applied. Since actual transformers are not ideal devices, variation in loading may cause problems with the transformer's internal impedance. In other words, if the load should be light during a high line condition then there will be an additional rise in the secondary voltage beyond that due to the rising line voltage. This is caused by the decreasing voltage drop in the transformer windings.

Most smaller transformers (10 VA or less) provide a load regulation of about 20%. The transformer will exhibit a no-load voltage about 20% higher than at full rated load. This factor must be taken into account when calculating the maximum VAC ( and voltage drop into the regulator ) with low load currents.

Due to inherent transformer characteristics, regulation will vary inversely with size (or VA rating). In larger transformers, size is determined primarily by the heat generated by internal losses while in smaller designs, size is determined by the maximum permissible no-load to full-load regulation.

It is our hope that this brief summary of power supply design and transformer selection will aid you in designing your next project. If there are other questions regarding transformer design and applications please feel free to call Zettler Magnetics, Inc. at 1-949-360-5838.

References: Colonel Wm. T. McLyman, Transformer and Inductor Design Handbook, 1988, Marcel Dekker, Inc. Eric Lowden, Practical Transformer Design Handbook, 2nd Edition, 1989, McGraw Hill



Therefore a center tap configuration is usually preferred in low voltage supply applications.



The dual complementary rectifier is a combination of two full-wave center tap circuits and is a very efficient method of obtaining two identical outputs of reversed polarity. Since a common ground is shared it is also called a center tap bridge rectifier.



The full-wave center tap rectifier is the most common selection for moderate power applications in regulated DC power supplies. Standard assumptions with this configuration are as follows and relate to the diagram below.



- 1. VREG is approximately 3 volts DC or greater.
- 2. VRECT is approximately 0.7 volts DC.
- 3. VRIPPLE is approximately 10% VDC peak.

The following formula may be used for calculating the secondary voltage of the transformer:

$$V_{\text{AC}} = \frac{V_{\text{OUT}} + V_{\text{REG}} + V_{\text{RECT}} + V_{\text{RIPPLE}}}{0.9} X \frac{V_{\text{NOM}}}{V_{\text{LOWLINE}}} X \frac{1}{\sqrt{2}}$$

where: 0.9 = typical rectifier efficiency

and  $\frac{V_{\text{NOM}}}{V_{\text{LOWLINE}}}$  is the ratio of the nominal AC line voltage to the required low line conditions.

This equation can be illustrated in the following hypothetical example for a power supply requiring a 10 VDC output at 0.1 Amp. The power supply input is a nominal 115 VAC @ 50/60 Hz but must operate down to an input of 95 V rms. In this example the following conditions would then apply:

Vout = 10 V  

$$V_{REG} = 3 V$$
  
 $V_{RECT} = 0.7 V$   
 $V_{RIPPLE} = 1.0$   
 $V_{AC} = -\frac{14.7}{2} \times -\frac{10}{2}$ 

١

$$AC = \frac{14.7}{0.9} \times \frac{115}{95} \times \frac{1}{\sqrt{2}} = 14 \text{ Vac}$$

From the above result it can now be seen that the transformer secondary voltage can be specified as 28VCT (center tap). For a bridge rectifier of the same output requirements, only the following would change:

Therefore, VAC is now calculated as:

$$VAC = \frac{15.4}{0.9} \times \frac{115}{95} \times \frac{1}{\sqrt{2}} = 14.6 \text{ VAC}$$

The transformer secondary voltage is now 14.6 V.

### Transformer Secondary Current

The final step is determining the transformer rms secondary current. Although this value is properly derived by the use of complex analysis, there are rule-ofthumb approximations that quickly provide values for expedient design. These approximations are shown in the chart below.

| Rectifier<br>Type       | Filter<br>Type*    | Required rms<br>Secondary Current<br>Rating |
|-------------------------|--------------------|---------------------------------------------|
| Full-Wave<br>Center Tap | Choke Input        | 0.7 x DC Current                            |
| Full-Wave<br>Center Tap | Capacitor<br>Input | 1.2 x DC Current                            |
| Full-Wave<br>Bridge     | Choke Input        | DC Current                                  |
| Full-Wave<br>Bridge     | Capacitor<br>Input | 1.8 x DC Current                            |

\*Note: Although choke input filters are not included in the above discussion they have been included in the above table for reference purposes

#### Magnetics, Inc. ZETTLER

## **Technical Notes**

### **Specifying Power Transformers**

### Introduction

The conversion process in power electronics requires the use of transformers; components that are frequently the heaviest and bulkiest items in the conversion circuitry. They also have a significant effect upon the overall performance and efficiency of the system. Accordingly, the design of such transformers has an important influence on overall system weight, power conversion efficiency and cost. Because of the interdependence and interaction of parameters, judicious tradeoffs are necessary to achieve design optimization.

One of the more common problems for the circuit design engineer is the selection of power transformer ratings for a particular DC power supply. The designer is immediately faced with a number of rectifier circuits and filter variations. For the sake of simplicity, we will make certain assumptions which should be applicable to 99% of the design applications encountered.

#### Filters

The only filter design that we will be considering is the capacitor input filter. Choke input filter designs will not be considered for the following reasons:

1. The higher weight and cost of chokes.

2. If a regulator is used, which is usually the case, it can be assumed that sufficient extra ripple reduction will be provided. A L-C section will therefore not be required. Also, the regulator will improve output voltage regulation with load.

A disadvantage, however, of capacitive input filter systems is caused by the discontinuous secondary current flow. Current is drawn in short, high amplitude pulses to replace the charge required by the filter capacitor which discharges into the load during diode off time. This results in a higher effective rms value of transformer secondary current. The transformer average VA rating is the same as a choke input filter design because the higher DC output voltage obtained at the capacitor compensates for this effect. An advantage to using a capacitor input filter is that, with the exception of very high current, standard diodes will handle most of the peak or surge current requirements of a capacitive filter design.

### **Rectifier Circuits**

The other design consideration is that of a rectifier circuit configuration. The most common single phase circuits are:

- 1. Half-Wave (single diode)
- 2. Full-Wave center tap (two diodes)
- 3. Full-Wave bridge (four diodes)
- 4. Dual Complementary supply, also known as a Full-Wave center tap (four diodes)

### **Half-Wave Rectifiers**

The only advantages of a half-wave rectifier are its simplicity and the cost savings of one less diode. Its disadvantages are numerous:

1. Extremely high current spikes are drawn during the capacitor charging interval (one current surge per cycle). This current is limited only by the effective impedance of the transformer and the rectifier. This surge must not be too large or it will damage the rectifier. This short onceper-cycle current spike also results in very high secondary rms currents.

2. The unidirectional DC current in the transformer secondary biases the transformer core with a component of DC flux density. As a result, more iron is needed to avoid core saturation.

The only situation in which a half-wave recitfier should seriously be considered is in an application with very low DC power levels of 1 watt or less.

### **Full-Wave Rectifiers**

The rest of the single-phase recitifier circuits are of the full-wave variety. In these designs, secondary current surges occur twice-per-cycle so that they are of smaller magnitude and the fundamental ripple frequency is double the supply frequency. In addition, all full-wave rectifiers produce the basic rectified waveform.

### ► Full-Wave center tap

- 1. Uses 1/2 of the secondary winding at a time.
- 2. Requires a center tap.
- 3. Utilizes 2 diodes.

#### ► Full-Wave bridge

- 1. Uses the entire secondary winding continuously.
- 2. No center tap required.
- 3. Utilizes 4 diodes.

From the above it can be seen that selecting which full-wave rectifier to use is a question of tradeoffs. The bridge rectifier has the best transformer utilization but requires the use of 4 diodes. The extra diodes result in double the voltage drop as that in a center tap circuit.



## **Sealed Transformers**

### Technical Information

### Rated Power

The power ratings listed are secondary power levels or power available at the load. The rated power is derived as the product of the rms rated secondary voltage under load and the rms rated secondary current. With several secondaries the rated power levels are added. This rated power is defined on the basis of a maximum ambient temperature and on the temperature class attributed to the manufacturing materials.

**For Example:** P = 3.2VA T70/B defines a transformer with a 3.2 VA output at a maximum ambient temperature of 70°C. The maximum temperature rise will not exceed the limits set as defined in International Class B specifications.

**Note:** When the transformer outputs to a rectifier bridge with filter, the required power is greater than the product of VDC and IDC (see the technical notes on pages 3-5).

### Ambient Temperature

The air temperature as measured next to the transformer when placed in its operating environment.

### Maximum Temperature Rise

The difference between the temperature of the hottest internal component (winding) of the transformer, in continuous operation, and ambient temperature.

### Temperature Class

The international classifications of temperature are as follows:

| A | 105°C | н   | 180°C |
|---|-------|-----|-------|
| E | 120°C | 200 | 200°C |
| В | 130°C | 220 | 220°C |
| F | 155°C | 250 | 250°C |

These classifications define the maximum temperature the transformer components must withstand in continuous operation in compliance with the parameters outlined in IEC publication 85. These insulating materials are therefore certified for the thermal index corresponding to the declared class in accordance with IEC standard 216.

### • Specifics of Safety Transformers Per EN 60742

### Full Load Secondary Voltage Tolerance

Deviation from the rated value should be no more than: A) 10% for transformers with built-in short circuit protection (another 5% is granted on an additional secondary). B) 5% for transformers with multiple secondaries.

### No Load Secondary Voltage Tolerance

The values listed are maximum theoretical values. **Note:** For safety transformers the no load voltage should never exceed 50Vrms. This limit applies to the sum total value on transformers with several secondaries.

### Custom Transformer Designs

Any transformer with the same power and ambient temperatures corresponding to the values listed under the 44000 and 45000 series, and where the desired secondary voltages are between listed minimum and maximum values, are covered by EN 60742 or UL 506 depending on the model chosen. Any of the 44000 or 45000 series transformers can be modified to meet your special requirements.

Thermal protection can be added on request in the form of a thermofuse thermoswitch-CTP. In certain instances, the addition of thermal protection enables the ambient operating temperature to be increased while still complying with EN 60742.



## ZETTLER Magnetics, Inc.

75 Columbia, Aliso Viejo CA 92656 Tel: 949-360-5838 Fax: 949-360-5839 sales@zettlermagnetics.com www.zettlermagnetics.com